Evaporation Analysis of Sintered Wick Microstructures
نویسندگان
چکیده
Heat pipes offer passive transport of heat over long distances without incurring a significant drop in temperature. Topological and microstructural details of the wick material embedded in a heat pipe help determine its thermal performance. A good understanding of pore-scale transport phenomena is crucial to enhancing heat pipe performance. In this study, pore-scale analysis of thin-film evaporation through sintered copper wicks is performed. X-ray microtomography is employed to generate geometrically faithful, feature-preserving meshes. Commercial sintered wicks with particle sizes in the range of 45-60 μm, 106-150 μm and 250-355 μm and with approximately 61% porosity are considered. The capillary pressure, characteristic pore radius, percentage thin film area and evaporative mass and heat fluxes are computed using a Volume of Fluid (VOF) approach. Two different solution strategies are employed to stabilize the numerical solution and to improve convergence. After verifying that these strategies yield the correct solution, the VOF model is used to obtain static meniscus shapes in the pore space of the sintered wick samples. The meniscus shape is then held fixed and steady-state, thin-film evaporation analysis is performed. Liquid-vapor phase change heat transfer is modeled using a modified Schrage equation. Based on the present analysis, the best performing sample (particle size range) is identified along with the optimum contact angle. 1 Submitted for publication in International Journal of Heat and Mass Transfer, July 2012, and in revised form February 2013 2 Corresponding author: Tel. 1 765 494 5621 ; [email protected]
منابع مشابه
Evaporation analysis in sintered wick microstructures
Heat pipes offer passive transport of heat over long distances without incurring a significant drop in temperature. Topological and microstructural details of the wick material embedded in a heat pipe help determine its thermal performance. A good understanding of pore-scale transport phenomena is crucial to enhancing heat pipe performance. In this study, pore-scale analysis of thin-film evapor...
متن کاملNumerical Study of Evaporation Heat Transfer from the Liquid-Vapor Interface in Wick Microstructures
A numerical model of the evaporating liquid meniscus under saturated vapor conditions in wick microstructures has been developed. Four different wick geometries representing the common wicks used in heat pipes, viz., wire mesh, rectangular grooves, sintered wicks and vertical microwires, are modeled and compared for evaporative performance. The solid-liquid combination considered is copper-wate...
متن کاملAdvances in Fluid and Thermal Transport Property Analysis and Design of Sintered Porous Wick Microstructures
Sintered porous structures are ubiquitous as heat transport media for thermal management and other applications. In particular, low-porosity sintered packed beds are used as capillary-wicking and evaporation-enhancement structures in heat pipes. Accurate prediction and analysis of their transport characteristics for different microstructure geometries is important for improved design. Owing to ...
متن کاملA microscale model for thin-film evaporation in capillary wick structures
A numerical model is developed for the evaporating liquid meniscus in wick microstructures under saturated vapor conditions. Four different wick geometries representing common wicks used in heat pipes, viz., wire mesh, rectangular grooves, sintered wicks and vertical microwires, are modeled and compared for evaporative performance. The solid-liquid combination considered is copper-water. Steady...
متن کاملCharacterization of Evaporation and Boiling from Sintered Powder Wicks Fed by Capillary Action
The thermal resistance to heat transfer into the evaporator section of heat pipes and vapor chambers plays a dominant role in governing their overall performance. It is therefore critical to quantify this resistance for commonly used sintered copper powder wick surfaces, both under evaporation and boiling conditions. The objective of the current study is to measure the dependence of thermal res...
متن کامل